◎無(wú)窮小wúqióngxiǎo
[infinitesimal;infinitely small quantity] 一個(gè)變量在變化過(guò)程中其絕對(duì)值永遠(yuǎn)小于任意小的已定正數(shù),即以零為極限的變量,叫做“無(wú)窮小”
(好工具)無(wú)窮小量是數(shù)學(xué)分析中的一個(gè)概念,在經(jīng)典的微積分或數(shù)學(xué)分析中,無(wú)窮小量通常以函數(shù)、序列等形式出現(xiàn)。無(wú)窮小量即以數(shù)0為極限的變量,無(wú)限接近于0。確切地說(shuō),當(dāng)自變量x無(wú)限接近x0(或x的絕對(duì)值無(wú)限增大)時(shí),函數(shù)值f(x)與0無(wú)限接近,即f(x)→0(或f(x)=0),則稱(chēng)f(x)為當(dāng)x→x0(或x→∞)時(shí)的無(wú)窮小量。特別要指出的是,切不可把很小的數(shù)與無(wú)窮小量混為一談。查看百科